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A Convergence Analysis of an H-Version Finite Element Method
with High Order Elements for Two Dimensional
Elasto—Plasticity Problems

. Y. Lit & 1 Babuika?
Institute for Physical Science and Technology , University of Maryland , College Park , MD 20742

Abstra_ct

In this paper, we will give an h-version finite element method for a two dimensional nonlinear
clasto-plasticity problem. A family of admissible constitutive laws based on the so—called gauge

function method is introduced first, and then a high order h-version semi-discretization scheme is
presented . The existence and uniqueness of the solution for the semi-discrete problem are guaranteed
by using some special properties of the constitutive law, and finally we will show that as the maximum
element sise A — 0, the solution of the semi-discrete problem will converge to the solution of the O
continuous problem. The high order h-version discretization scheme introduced here is unusual. If

the partition of the spatial space only has rectangles or parallelograms involved , then there would not
be any limit on the element degree . However, if the partition of the spatial space has some triangular

elements, then only certain combinations of finite element spaces for displacement and stress functions
can be used. The discretization scheme also provides useful idea for applications of hp—version or high

order h—version finite element methods for two dimensional problems where the elasto-plastic body i’.ty Codes

not a polygon, such as a disk or an annulus. |
Avail andfor
, Dist Special
1 Introduction
-/
Several papers about finite element methods with some theoretical convergence ysis results for

two dimensional elasto~plasticity problems have been published in the engineering literature , such as the
work of Bonnetier [3], Johnson [10] [11], and Miyoshi {14] . However, in all these approaches , the shape
of the domain is assumed to be polygonal and is partitioned into several triangles. The displacement
functions are approximated by piecewise linear functions, and the stress functions are approximated
by piecewise constant functions. This choice of finite element spaces for the displacement and stress
functions makes it easy to use the constitutive law , because both the strain and stress functions will be
piecewise constant, and each element can therefore be defined as in either its elastic or plastic state.
However , for smooth solutions or over sub-regions where the solution is smooth, higher order polynomial
spaces are usually preferred . Moreover, if the domain under consideration has a special shape, such asa
rectangular domain or an L shaped domain, then we can just use rectangular elements in the partition.
For rectangular elements , we have to apply piecewise bilinear approximation for the displacement function
in order to obtain a conforming finite element method . In this case, the corresponding strain functions are
piecewise linear instead of piecewise constant. Hence the stress function can no longer be approximated
by piecewise constant functions, and we can no longer define a whole element as elastic or plastic. As
we will see, the design of a scheme to choose an appropriate constitutive law on high order elements is

an important and subtle problem.

'Partially supported by NSF grant DMS-91-20877 & ONR grant.
2Partially supported by NSF grant DMS-91.20877 .




A family of admissible constitutive laws based on the so-called gauge function method was first
introduced by Bonnetier [3]. An h-version method with piecewise linear displacement function for prob-
lems based on a constitutive law of this kind has been presented in his work. This paper presents a high
order h-version finite element method for elasto—plasticity problem based on an admissible constitutive
law. An unusual method to define the constitutive law over each element is proposed . The convergence
analysis shows that the limit function is guaranteed to satisfy the constitutive law over the whole domain .
Two types of elements, namely rectangular and triangular elements, are discussed . In addition, some
possible generalizations of our method are also mentioned .

2 A Family of Admissible Constitutive Laws for Two Dimensional
Problems

The family of constitutive laws that will be introduced below is based on the following two basic
assumptions :

1) Existence of a convex yield surface.

2) The normality condition: the plastic increment is proportional to the outward normal to

the yield surface during plastic flow.

There are two main reasons why we choose this family of constitutive laws. First, they are actually
a generalization of some of the most commonly used engineering formulations. Second, Bonnetier has
shown that the continuous problem based on this family of constitutive Jaws will be well posed .

For two dimensional problems, we will describe a yield surface by the stress tensor o= (011, 022,012) 7,
and a set of hardening parameters ( sometimes also called internal parameters):

a= (01,02,...,0m)T CUCR™

where U/ is a convex set in R™ .

The elastic set is assumed to be convex, and hence we can think of a function F(o,a) whichis a
convex function of ¢ and a as the gauge function of this convex set. More precisely we assume that
there exists a function F: R3x# ~— R such that

Al). F(o,a) is a convex, and piecewise analytic function of o,a. (2.1)
A2). F(0,0) = 0. (2.2)
A3). There arc constants v,I' > 0 such that y < |%§ [,] %g |<T (2.3)
uniformly on the set {(o,a)| F(o,a)= Zg} for some
Zo>0.
oF 8F oF oF\T 8F _(OF OF oOF \T
where — = . R and — = — , 53,000, 57— .
0o 8041 ' 0022 ° 8012 fa 0a; ' Bag fa,,
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The corresponding constitutive law can then be derived by using the two postulates mentioned
earlier. Let (0,a) lie inside the yield surface, i.e., F(o,a) < Zo. Then the material is assumed to
be elastic. Therefore the stress and strain rates must satisfy Hooke’s law , and there is no change in the

hardening parameters. So
6 = Dé
{ (24)

a=0

8o e

where ¢ = %’ ¢ = — etc,and D is the usual elasticity tensor. In plane stress problems, for
instance , the elasticity tensor has the form:

1 v 0

D= E 1 74 1 0
1-v? l1—-v

0 0 2

where E and v are the Young’s modulus and the Poisson’s ratio of the material .

If the point (o,a) lies on the yield surface when t = to,ie. F(o,a)(t) = Zo, and will move
towards the inside of the yield surface afterwards, then we still say that the material is elasticat ¢t = ¢ .
So the stress, strain and hardening parameter rates will still satisfy the equation (2.4).

If the point (o,a) lies on the yield surface when ¢ = 2 , and will remain on the yield surface
for to <t < tog+6,ie. F(o(t),a(t)) =29, Vit € (to,t0+5),then we say that the material is
plastic at ¢ = 29 and we will split the strain rate é into elastic and plastic parts

i=éE 4 &P, (2.5)
and assume that the elastic part is still related to the stress rate by the Hooke’s law
6 =Dé =D(e-¢). (2.6)

Then by the normality condition 3 A > 0 such that

= . 2.7
Sy oF )
da

During the plastic flow, (o (t),a (1)) still remain on the yield surface, therefore differentiation of
the equation F(o(t),a(t)) = Zp with respect to time ¢ yields

T T
%g&+%§ é=0. (2.8)




Using (2.6), (2.7) and (2.8), we can eliminate ¢é” to obtain:

T
r Iy D-a!:gf D .
=P eFTeE, oF | ¢
0a 8a ' 80  Bo
4 (2.9)
o, dF
\ fa Oa

Hence, the constitutive equations based on the gauge function F(o,a) read

f 6d=Dé¢
{ . for (oc,a) €€ (2.10)
a=0
o<|p_ —_DO%FOFTD :
|7 0.FT0.F + 0,FTDO,F
for (o,a)€e P (2.11)
s _ _ _0,FTs
&= "8 FToF F
where
oFT,
E=4{(0,a) F(e,a)<Zy or F(o,a)=2Z, and-az d<0;, (2.12)
and ‘
oFT
P={(0,a) F(o,a)=2¢ and Bo >0, . (2.13)

The three assumptions Al )~ A3) “on the gauge function F(o,a) are essential for the proof
of the existence and uniqueness of the solution. Actually from the assumption A3), we can get the

following :

Proposition 2.1 Let ¢ = A(0,a,¢), where A is the constitutive operator defined by (2.10)
and (2.11). Assume that the gauge function F(o,a) satisfies the assumption A3). Then there ezist
conslants 0 < v' < T’ independent of the values of o ,a and é such that for any (o,a) € R® xU

and any ¢ € R3,
7 1€ < A(o,a,é)Te < T'|¢)2. (2.14)

PROOF: Any vector é = (é1,¢622,¢é12)7 , can be decomposed into a sum of two vectors, one parallel

to 8,F , and the other orthogonal to 9, F , with respect to the scalar product (a,b) = (Da,d) =
T .

a’Db, ie.

é=ét 4 & (2.15)




m

with
é' = <8,F,8,F >'< 8,F,é> 8,F
- (2.16)
= (8,FTD8,F)(8,FTDé)d,F
and
(Dét,eé')y=o0. (2.17)

Sinqe D is positive definite and independent of the values of o,a and ¢, it is sufficient to show
that there are constants 0 < v’ < '’ such that

7'(¢,€) < A(0,@,6)Te S T'(&,¢). (2.18)
Now suppose the material is elastic , then the constitutive operator A is defined by (2.10), and we get
A(o,a,6)Te = (Dé,é) = (é,¢). (2.19)

Otherwise , if the material is plastic, the constitutive operator A will be defined by (2.11) and we can

let
= [a,r’a,r + 8,FTDo, ] -,

and get
A(0,a,d)Te = [(D-,‘Da,ra,ﬂp)e,e]

= (é— u(8,FTDé)O,F ,¢)
= (er,ét)+ (¢! - u(8,FTDé),F,é").
From the definition of ¢é" , we have

A(0,0,0)Te = (é+,é) + (1 - u(8,FTDO,F))(e',e")
(2.20)

= (&,é) + u(8FTa.F)(e",e").

By virtue of the assumption A3), the term £ 8,FT8,F is bounded from below and above:

2

v T
S (8, F 0, F) <1
o < M%) £
2 .
. ' ‘y ’
which shows that (2.14) holds for = and T =1. (]
(214) TETE+0Mm

Definition 2.1  The family of the constitutive laws (2.10)~ (2.13) based on the gauge function of the
yield surface, F(o,a) which satisfies (2.1)~ (2.3) will be called admissible constitutive laws or briefly

admissible laws. -

As we mentioned earlier, the admissible constitutive laws are actually a generalization of some of
the most commonly adopted engineering formulations. For instance, the kinematic hardening law for

two dimensional problem ( also called Zicgler’s rule), can be formulated as follows:




Let 8 = (B11,822,612)T be the hardening parameters, and n > 0 be the constant coefficient of
hardening rate. The Von Mises surface is chosen to be the yield surface, and it has the form:

f(e-8)=2 | (2.21)
with Zg > 0 a constant and
f(a) = (af, + 03, - oo + 303, )l,2 .
The constitutive equations based on Ziegler’s rule then take the form:
6 =Dé if f(e-B)< 2
{3=0 or f(o-B)=2 ad 8fT6<0

(2.22)

6= [D ~ (n+ 8fTD3f)"*(Ddfof™D)] ¢
if f(o-B8)=2p and 3fT6>0 (2.23)

. s
with the rate of the plastic strain defined as:
é? = n~1(8fTé)of . ' (2.24)
Now let R be the matrix -
4/3 2/3 O
R=| 2/3 4/3 0
0 0 1/3

and VR be one of its square roots. We can then define another set of hardening parameters a =
(V7T VR )18, and a gauge function of the form:

F(a,a) = f(o - yTVR a). (2.25)

Obviously the gauge function F(o,a) defined by (2.25) is ‘a convex and analytic function of o
and a , and satisfies the equation F(0,0) = 0. A simple computation also shows that on the set
{(0,0)eR¥xR3 | F(o,a)=12Z},the derivative §,F satisfies the inequalities

5 <18F| < VT

Since R is positive definite, 0,F = ~ /7 VR 8,F is also bounded uniformly on this set. Hence the
gauge function F satisfies all three of our assumptions. It is not difficult to check that in (2.10)~ (2.13),
if we use the gauge function F defined asin (2.25), we will then get a set of constitutive equations which is
equivalent to the equations (2.22) and (2.23) after the variable substitution a = (/% vR )~1 8. Hence
we can consider the kinematic hardening law as a particular case of our general admissible constitutive

laws .




Similarly the two dimensional pure isotropic hardening law can be cast into our admissible form by

using a gauge function of the form:
F(o,a)= f(0) - h(a),

where a € U/ C R is the isotropic hardening parameter and A (a) is a concave monotonically increasing
function of the variable a with A(0) = 0.

3 Two Dimensional Quasi—static Elasto—Plastic Problems with Con-
stitutive Law Based on A Gauge Function Method

A typical two dimensional quasi-static AY
elasto-plastic problem with the constitutive

law based on the gauge function method can
be formulated as follows: ‘

Let Q , a bounded domain in R?
(cf. Figure 3.1), be the refcrence config-

uration of an elasto-plastic body. We de-

note by U = (U;,U;) the displacement

field of the body where U, (z,¥), U2(z,¥) \aﬂ

are the displacements at the point (z,y)

in the x and y directions respectively. Let
o = (011,022,012)7 be the stress tensor, FIGURE 3.1 A bounded domain in R?
where @y, and o4, are the normal stress in the £ and y directions, and 0,7 is the shear stress. We
will use € = (€7,€22,€62 )T to denote the strain tensor, where the normal strains ¢;; and e, and
the shear strain ¢, are defined in the normal engineering formula:

8U1 . 8U2 8Ul 3U2

R A N

Finally 7 = [0, T'] will be the time interval of interest ,and f = ( f1, /2 )T is the body traction acting
on the elasto-plastic body €. Then a general two dimensional quasi-static elasto-plastic problem with

the constitutive l]aw based on the gange function method is as follows.

(3.1)

To find the displacement functions U (z,y,t) and the stress functions o(z,y,t) , such that

o(z,y,t) satisfies the following equilibrium equations:

9
all(z’ ’t) —— z,y,t)=f1(z,y,t)
ae. on NxI (3.2)

don
-5. (%, J)—W z,y,t)= fa(z,y,t)




with the boundary condition :
Ui(z,y,t) = Uz(z,y,1) =0 for (z,y) € 89, (3.3)

and the stress function o(z,y,t) defined by the following constitutive equations:

o(z,y,t) = Dé(z,y,t)
: for (o,a)€ €& (3.4)
a(z,y,t) = 0
a(z,y,t)=(D - D')é(z,y,1) .
T . for (o,a)eP (3.5)
a(@p 1) = oeb Ol 5 by g
(0, FT8,F) (z,y,1)
where D’ is defined as
' _ LD@,FO,FTD)(z,y,t)
D (z9:) = G F15.F + 6,FTD6, F)(z.3.0) - (36)
The stress, strain and hardening parameter functions satisfy the following initial conditions :
oij(z,y,0)=0 ; U;(z,y9,0)=0 i,j=1,2 ,
3.7
ai(z,y,0) =0 i=1,2,...,m

Of course here we have to require that the body traction functions satisfy the compatibility conditions:
fi(z,y,0) =0, i=1,2 . (3.8)

Finally £, P are the elastic and the plastic sets defined by :

F(o,a)< 2 or

£E={(0,0) e RExR" if ' ‘ (3.9)
F(o,a)=2y & 8,FT(0,a)6<0
F(o,a)=29 and

P =4 (0,a) € R xR™ if (3.10)
3 FT(0,0)6 >0

For the above two dimensional elasto-plasticity problem, Bonnetier [3] has proved the following

theorem :

Theorem 3.1 [If the gauge function F(a,a) is admissible, i.e. it satisfies all the three assumptions
A1)~ A3), and if the body traction functions f;(z,y,t), i=1,2 arein L?(Q) for all fized t , and
piecewise analytic in t for (z,y) a.e. on $2. Then the two dimensional elasto-plasticity problem

(3.2) ~ (3.10) has a unique solution. Moreover, the solution is also piecewise analytic in time t .




4 Semi-Discrete Approximation of the Quasi-Static Problem

Consider first a special case where Q C
R? is a bounded domain which can be parti-
tioned into rectangles {T,,} of size h and the
aspect ratios satisfy ag < a < a; where ap

and a; are independent of the element size
h. Let 7) be such a partition, A be the
set of nodes of Q\dQ,and {¢p}  ,n € N
be the piecewise bilinear basis functions such
that ¢, = 1 at thenode n and ¢, = 0
at other nodes.

FIGURE 4.1 A domain @ which can be
Denote by Q,,0(€) the set of contin- partitioned into several rectangles

uous piecewise bilinear functions defined over Q such that they equal zero on the boundary 9%, i.e.
h(z,y)|lr,=az+by+czy+d }

h(z,y)lan =0

Qio(h) = { h(z,y) € Hy(Q)

Thus any function H (z,y) in Q1,0(R) can be written in the form:

H(z,y) = Z Hn¢n(zay)'
neN

Meanwhile denote by é, () the set of all piecewise bilinear functions defined over 2, i.e.
G = {Rzn e @) | Rz, =az+bytezyral.

Notice that the functions in Q) () are not necessarily continuous over the domain € . Let A be
the total degrees of freedom of the finite element space @, () , and {5,. } , n € N be the piecewise
bilinear basis functions of the space @1(%) . So any function A (z,y) in §;(QU) can be expressed

in the form:
ﬁ(z»y) = Z ﬁngn(zay) .
neAN

For piecewise bilinear functions, we can use four Gaussian points on each rectangular element . Then by
using the interpolation method , any function in the space §, (2) will be uniquely determined by its

values at these four Gaussian points.

Now we can formulate our semi~discrete plasticity problem as follows.




To seek the solution (U,o,aa) , such that for any fixed ¢, U= (U, U3)T € (Qio(f))?
o= (on,0n,0)T € (éx(ﬂh)) , a=(aj,az,...,am )T € (51(9;.)) , and they are in the

form

U= Y Uin()én(z)  with Uin€CP®(0,T)  i=1,2
neEN

0= Y Gijn(t)Pn(z)  with 0ijm € CO®(0,T)  i,j=1,2
neN

ai = Y @in(t)én(2) with a; € C2®(0,T) i=1,...,m
neff

where Cf ( O,T) is the set of functions, continuous on {0, T], and have a uniformly bounded right
derivative of any order at each point on [0, T ). The stress functions satisfy the equilibrium equations:

/(011,g¢")+( 12,% —/(fl,%)
V neN (4.1)

fen, 58+ (on, 32y = [ (5, 60)

Here the body traction f = (f;, f2) is piecewise analytic in time and for each t € [0,T], f(-,t) €
L?3() . On each element, the corresponding constitutive equations are given by :

6(%x) = Dé(x) F(o(2k),a(2k)) < Zo

if or (4.2)
a(¥) = 0 8, FT (%) o(%x) <0
6(zx)=(D- D')(:i:k) é(2x) F(o(%x),a(ix)) = Zo

if and (4.3)
PR 2l CALICO P TR 8, FT(34) 6(3x) > 0

" (8. FT0, F) (24)
where ;. (k = 1,2,3,4) € G and G is the set of Gaussian points of all the rectangles in the domain
Q,and

D8, F8, FTD
FT0.F + 0,FTD0, F

D'(#) = (3x) - (4.4)

The initial conditions are:

v@,z)=0 , ¢(0,2z)=0 , a(0,z)=0 . (4.5)

Of coursc here again we assume that the traction functions satisfy the compatibility conditions:

Si(0,2)= 2(0,2) =0

To simplify the statement of our proof, in the following context we will assume that the body
traction functions are analytic in time, and the gauge function F(o,a) is also analytic in o and
o . (Similar results still hold if f is only piecewise analytic in time, and F(o,a) is only piecewise

analyticin 0 and a .)

10




5 Existence and Uniqueness of the Solution of the Semi-discrete
Problem

Note that U = (U, Uz) is chosen to be piecewise bilinear. From the relation between strain
and displacement (3.1), we know that the strain functions as well as the strain rate functions will be
piecewise linear. So now inst.ad of the whole element , we can define a Gaussian point Z; € Gofa
rectangular element to be elastic at fp (resp. plastic) if it satisfies (4.2) (resp. (4.3)) at the point £ .
Therefore from their values at the Gaussian points we can define the functions ¢, a, 6 and @ to be

some piecewise bilinear functions.

Consequently we can now define the set of elastic Gaussian points and the set of plastic Gaussian

points as follows:

o o _ | F(o,@)(z)<Zp - or
E=EU)={z€CG (5.1)
F(o,a)(z)= 2o and 8,FTDé(U)(z) <0
and
P=P(U)={zeG | F(0,0)(z)= 20 and 8,FTD¢(U)(z) >0} , (5.2)
where ¢(U) = 860(:}) =c(%(t£)=c(l7) , and @ is the set of all the Gaussian points in the domain Q.

Usirg the constitutive equations given by (4.2) and (4.3), we can easily verify the following :

Proposition 5.1 The elastic and the plastic Gaussian point sets , £ and P, defined by (5.1 ) and

(5.2) can also be ezpressed in terms of the stress tensor: VU e (H}DQ))?, R
-~ { ~ F(asa)(-"-‘)<zo or }
EW)={z€bG (5.3)
F(o,0)(x)=% & 8,FTa(U)(z)<0
P)={ze& | Fo,a)@)=2% and 8,F 6(U)(z)>0} (5.4)

where lhe siress tensor & (U)(z) is defined by the constitutive equations (4.2) and (4.3).

Let (-,-) be the standard vector inner product defined on R3 . For any given displacement
function U (z,t) and any Gaussian point £ , by using (3.1) we can easily find the values of the
corresponding strain rate at that point, é(Z,t) . Then by using the constitutive equations (4.2) and
(4.3) we can find the values of the corresponding stress rate at that point, &(Z,t) . Hence at each

Gaussian point Z , we can defined a functional G (U (%)) such that:
G(U(2)) = (6(U(2)),e(U(2))) -

For this functional, we can give the following Lemma which is important in the proof of existence and

uniqueness of the solution for the semi-discrete problem .

11




Lemma 8.1 Let (& (%x),&(2x)) € R3 x U be determined by equation (4.2) and (4.83). Then the
Junctional G(U(zx)) = (6 (U(&x)), é(U(22))) , defined on the set (Q10(Ta))? , is strictly convez.
Here T, is any rectangular element of the partition T), .

Proor: Let U,V € (Q10(Tn))?,0 € (0,1) and W = 0U + (1-0)V . We define:

Go={2 eTanG| F(o,a) < 2}

Pi={z €TanG | F(o,a)="2, 8,FTD¢() >0, 8,FTDé(V) >0 )
P={28 eTunG | F(0,0)=2, 6, FTDE(V)<0, 5,FTDE(V) S0}
Ps={4 € TanG | F(0,a)=20, 8,FTDé(U)>0, 8,FTDe(V)<0 )
Pi={4, € TanG | F(o,0)=2,8,FTD(U)<0, 8,FTD¢(V)>0}

1). On &UP,, all three functions, U, V and W , are corresponding to the elastic state. So we get

G(W) = (6(W),¢{(W)) = (De(W), é(W))
0(DE(U),é(U)) + (1-6)(Dé(V), (V)
6(5(U),&(U)) + (1-6)(6(V), (V)

= G+ (1-0)G(V)

A

2). On P,, all three functions, U, V and W , are corresponding to the plastic state. Hence we have

(6(W),é(W)) = ((D~-D")e(W), é(W))
8((D-D")é(U),é(U)) + (1-0)((D~ D")é(V), (V)
8(6(U),é(U)) + (1-8)(a(V), (V)

= 6GUY+ (1-0)G(V) ,

G (W)

A

where D’ is defined as (4.4) which is independent of the values of U and V, and only dependents on
the values of ¢ and a.

3). On P3, we have the case where U is corresponding to the elastic state, and V corresponding
to the plastic state. Decompose the vector é = (é1;, é23, €12 )T into a sum of two vectors, one parallel
to 9.F(0(Zk), a(Zx)), and the other orthogonal to 8, F (o (&k), a(£x)) with respect to the scalar

product {(-,-), t.e.

é=ét 4 & (5.5)
and
(Dé+,é")y=0 . : (5.6)
Obviously we have
W) = L U)+ (1-0)L (V) ‘
{ -
Wy = et )+ -0 (V)
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Casel. Suppose 8, FTDé(W) > 0, then

(6(W),e(W)) ((D - D) e(W), é(W))
(¢(W) - p8,FT Dé(W)8,F, ¢(W))
(et (W), &)

+{¢" (W) - p8,FT De(W)8,F, " (W)),

where p = (8,FT8,F + 8,FT D8,F)(o(%:), a(ik)). Hence by the definition of ¢!, we have
(6(W),e(W)) = (W), e+ (W) + K(8, FTDe(W))?, (5.8)

where
1

1
K= [a.,ﬁ‘pa.,p " 8, FT D8, F + 0,FT 0,F
is a positive number independent of the values of I/ and V . From the fact that

{a.,FTDe(W) = 00, FTDé(U)+ (1-0)8,FTDé(V)> 0

8FTDe(V) < 0

we get
0<3HFTDé(W) <08, FTDé(U) .

On the other hand, by the convexity of the scalar product (-,-) and the equation (5.7), we have
(W), (W) < 0(E W), & (1)) + (1-0)(E(V), &£ (V) .
Hence the equation (5.8) becomes
(6(W),é(W)) < 8(&(U), & (U)) + (1-0)(&(V), e (V)
+0K (3, FTDe(U))? ,

o (6(W),é(W)) < 8 [(&(U), (1)) +"K(a,FTDe(U)-)2]

+(1-0)(e(V),¢e(V)) .
Using (5.8) with W replaced by U (since ¢(U) corresponding to the plastic state ), we finally have

(5.9)

(6(W),e(W)) < 8(6(U),¢(U)) + (1-6)(a(V),&(V)) .

Case2. Suppose 8, FTDé(W) < 0, then
(6(W),é(W)) = (e(W),e(W))

= (W), W) + (' w), e (w))
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o (8,FT D¢(W))?

(8, F, 8, F) (510)

(6(W),e(W)) = (& (W), et (W) +

From the fact that
{ 8, FTD¢(W) = 00, FTDé(U) + (1-0)8,FTDé(V)

8, FTDéWU) > 0
we get ‘
(1-0)8,FTDé(V) < 8, FT De(W)
Hence (5.10) can be rewritten as

(8,FTDé(V))?
(0, F,08,F)

(6(W),¢(W)) < (1-6) [(é*(V),é‘(V))+

+0( (1), (D)) .
Replacing W by U in (5.8), we get
(1), () S (6(D),€(U))

Replacing W by V in (5.10) (since ¢ (V) is corresponding to the elastic state), we get

(8, FT Dé(V))?
(8,F, 8, F)

(6(V),é(V)) = (&(V), & (V) +
So again we get |

(6(W),é(W)) < (1-0)(6(V),e(V)) +8(a(U),e(U))

4). On P4, we can prove the same result by changing the roles of U and V in 3).
From the above discussion we see that the functional G (U (%)) is strictly convex, and this com-

pletes our proof of the lemma. u}

Nowlet f = ( fis jz) € (L%(9))? be the incremental body traction, we can define a functional

as follows:

For any )
ff=-[ 0 ] € (HY(®) ,
2
let

F(o,a,U) = %/ﬂ(é(U),é(U))dz-—L(faU)dz (5.11)

where o(U) € (é;(ﬂh))a is defined as in (4.2) and (4.3). Then by using the result of Lemma5.1, we
“can easily prove the following theorem.
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Theorem 5.1 The functional ¥ (o, a, ) defined by (5.11) on ( H} () )? is strictly convez and coercive
over the space (Q10(M))?.

PROOF: Because &(U) is piecewise bilinear, and ¢é(U) is piecewise linear over  , for any
rectangular element T, € 7, , we have that (o(U),é(U)) € Q2(Tn), where

h(z,y)=a1+asx+a3y+aezy+asz +asz’y
Qz(Ta)={h(=,v)

+arzy? +agy? +agz?y? V(z,y)€Tn

For the four points Gaussian quadrature, it is exact for any function in Q2 , i.e. forany T, € 7 , we

have
4
[ @), ez = 3 wn(a(U @), (U @) (5.12)
Tn k=1

where #; (k = 1,2,3,4) are the Gaussian points of the rectangular T, , and wi (k=1,2,3,4) are the

weighting cocfficients.

From Lemmab5.1, we k;low that the functional G (U(%x)) = (6 (U(2x)),€(U(2r))) is strictly convex
over (Q1,0(T,))?. We also know that the weighting coefficients, w; (k = 1,2,3,4), are all positive.
Therefore for any U,V € (Q1,0())?, 8 € (0,1) and W = U + (1-6)V, we have

L G(m,em)dz = 3w (6 (W (@), e(W @)

k=1

Z we(6(0U (k) + (1-0)V(24)),e(0U (&) + (1- 9)V(=k)))
k—-l

< Zw,,o(a(v(z,,)) c(U(zk)))+Zw;,(1 0)(6(V(3k)),€(V(r)))
_o/ (5(U), c(U))dz+(l-0)/ (a(V),é(V))dz ,

for any T, € T . Obviously / fUdz is alinear functional of U . So F(o,a,-) is strictly convex
2
over (Q10(%))*.

To prove the coerciveness, take a sequence {Un}22, € (Q1,0(2))?, such that || U, || HI(Q) — ©

as n — 00 . Then from Proposition 2.1, we know that there exists a constant 7'

(6(U(2:)),8(U (%)) 2 7' (€(U(3x)),E(U (3x))) k=1,2,3,4,

where v is independent of the value of 0,a,é and U(%).
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Hence, '
F(o,a,U) = -/(a(u..) ¢(U,.))dz-/(f U, )dz

O

> Zwa(v(v.(z.)),e(v.(zk)))-/(; U,)dz

T €T hl

) an( ¢(Un(@r)), f(U-(n)))-/(j U,)dz

Ta €T k=)

LY RCCARICAN ER O R ATE

v
0Ot -

v

ey ., . .
AT NP (LA

by using the well known Korn’s Inequality ( see, e.g. [4] [13] [8] ). Hence as || Un ll3(q) — 0 , We have
F(o,a,U,) — o0, and the coerciveness is proved. ‘ (u]

Now let us consider the following minimization problem

[min (0,8,0) = min —/(u(U),e(U))dz /f’t'fdz (5.13)

where H), = (Q10())? . Then from the previous theorem, we know that for any (o,a) €
(@1(0%) )3 x (@1(W))™ , F(o,a,U) is a strictly convex and coercive functional of U € Hj .
So the minimization problem (5.13) must have a unique solution U € H), . Therefore we can have the

following corollary:
Corollary 5.1 The funclional F(o,a,-) defined in (5.11) has a unique minimum over the space
(Qr0(Q))?. :

By showing that the functional F(o,a,-) is Fréchet differentiable on the space (Q1,0(%))?,
we then have the following theorem :

Theorem 5.2 The minimum U of (5.13) is the solution of the following problem :
. O¢n . O¢n
/‘7(011"5;:;)+(012» ¢ )—/(fli¢ﬂ

neN (5.14)
./0(621, %:l:') + (&22a a¢” ) = /(f?a ¢n
with the constitutive equations:
6 (2x) = Dé(zx) F(o(2),a(2k)) < Zo ,
if or (5.15)
a(#) =0 0, FT () 6(3:) < 0

& (3x) = (D - D')(&k) € (&x) F(o(21),a(4)) = Zo
i {
)

Tra \eora and . (5.16)
& () = -‘(’Bf ﬂ(‘%);)g:; 0 F(2s 8, FT(24)(24) > 0

here 2, € G is any Gaussian point in the domain Q , and D’ (%) is defined as in (4.4).
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Proor: Let U, ¢€ (Qio())?, v>0and W = U + vé. Denote

L e, éW)) = (8(U), (U)o
m= | - (6(0), é(#)] 4

2v

2v

= ij o [(&(W.(é,.)),é(w,(i,,))) - 5 (U(3),¢(U ()
hm1

— (6 (@), 66|

and

2v
We will discuss the following five different cases:

#eb = {z€G | F(o(z)a(s)) < %}

Zr € Py =

{zeé |

#hePy ={zeC |

i € Py = z€eG |

Zr€Py = {zea |

1). On theset & |J Py, we have

F(o(z),a(z)) = Z,

9 FTDé(U)(z) >0
9 FTD(W,)(z)> 0
3, FTDé(U)(z)<0
8 FTDé(W,)(2)<0

F(o(z),a(z)) = Zo,

8,FT Dé(U)(z) > 0
8, FT Dé(W,)(z) <0

F(o(z),a(z)) = Z,

9, FTDé(U)(z)<0
3, FTDé(W,)(z)>0

F(o(z),a(z)) = Zo,

(DEW)4W) _ (pe(v + v 9),¢(4))

b (2) -

or

_ (DU +v9).&(U+ve)) -

by () = - 5 (Dé(9),¢(4))

2). Similarly on the set Py, we have

D3, Fd,FTD

ho(2) = -3 ((D- 8¢,F73,F+6,F7'D6,F) €'(¢),é(¢))

3). On theset P§, we can use the decomposition (2.15), (2.16),(2.17) and get

h(3) = .2_11, ((¢(W,),é(W,)) - (¢(U) - s FTDE(V) 8, F , (U)))

17

}
}
}
}

by () = (6(W.(2)),E(Wi(2))) — (6(U(2)),€(U(2))) _ ( &(Wu(i)) L (6(2)) -

(5.17)

(5.18)




-(¢(U)-pu8,FTDE(V)8,F, é(4))
= 2—1;((t(w,),e(W.))-(é(U),é(U)))-(é(U),é(d'))
+-22;<p8,F,€'(U))+ 1([‘80F¢é(¢)) ’

here v = 8,FTDé(U). So we get

h(#)= 5 (20).60) + F wa P,

+1(psd,F,é(9)) .
From the definition , we know that on P} we have
9, FTDé(U) > 0
{ 8, FTDé(U)+v8,FTDé(4) < 0
Hence |7| = |8, FTDé(U)| € v|8,FTDé(¢)|, and (5.19) yields

(5.19)

+9|8FTDE(@)| - Kud,F (@) (5:20)
= 3@+ Fula D@l .

3). On theset P{, we have

(¢(Wo) — pd, FTDE(W,)0, F ,é(W,)) — (¢(U),¢(V))

hl2) = 2y

-(€(U),é(¢))

= 5(4(8),6(#)) - £ 8. FTD:(W,) (8, F,é(W.))

= 5(e(0),4(8)) — L QFTDE(W)(8F,é(U) +vi(4))
From the definition of set P} , we have
O FTDé(U)+v8,FTDé(g) > 0
{ 0, FTDeé(U) <0
which yields |8,FTDé(U)| € v|8,FTDé(4)|. So finally we get
Ih(@)] S 5(6(8),6(8)) + 2= (8 F,é(U) +v¢(9))?

= 2(&(9),4(4)) + £ ((8F, )1+

20(9,F ,&(U)) (0 F ,é()) + v* (8- F ,é(9))?)

(5.21)

< 5((8),é(4)) + 2uv L, F,é())? .

LIRS
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Therefore using (5.17),(5.18),(5.20),(5.21) and the uniform boundedness of the gradient 8, F , we can

get that .
|hu(2)| < vC(é(P(20))1é(#(22))) Vo€ Hr and k=1,2,3,4

forsome C > 0.

Hence finally we get

|.‘F(a,a,W.)-
v

;'(a,m?)_[/o o(U)é(¢)dz - /‘,hsd:]

4
< z vCuwi(é(d(2:)),e(0(24)))
k=1

4
E U hu (ik)
k=1

=vC [ (De(8(2)),e(o(2)))dz,

which means F(¢,a,-) is differentiable on (Q1,0(f%))? . Differentiating F with respect to U , we get
that the minimum U of (5.13)satisfies the system (5.14),(5.15) and (5.16). This completes the proof of
the theorem . : a

By using the results of Corollary5.1 and Theorem 5.2, we can now prove the following theorem
about existence and uniqueness of the solution of the semi-discrete problem.

Theofem 5.8 If the body traction function f(z,t) is piecewise analytic in t , and for every fized
te[0,T), f(z,t) € L*R), then there is a unique solvtion for the ODE system (4.1) , (4.2) , (4.9)
and (4.4) satisfying the initial condition (4.5), and moreover the solution is piecewise analytic in time
t. ' '

Proor: We will prove this theorem in 4 steps. For the sake simp'city , we will assume that f(z,t)
is analyticin ¢t and F(o,a) is analyticin 0 and a. But the same result still holds when f and

F are piecewise analytic.

Stepl.  Here we will assume that at the beginning the material is in its virgin state. So at all the
Gaussian points the material is elastic until a time ¢ =ty when F(o,a)(Zk,t) = F(o,0)(Zk,t) =
Zo at some Gaussian points of some elements. Denote by. G the set of those Gaussian points and G
the set of all the Gaussian points of 5 . Then for t € [0,¢) , all the points are elastic , and we just
have a classical linear clasticity problem. So the problem will have a unique analytic solution over the

time interval [0,%).

Step2. As we will see in the following proof, the points of the set @\é; will remain elastic after
1o . But those of G, may or may not yield after o . To determine this we have to check the sign of
9,FT(0,a)d(%k,10 + 0) . Consider an auxiliary equation system such that (o',U?) € (QI(Q;,) )® x
(Q1.0(2))? would solve at 15+ 0.
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_/n(a{n%:"l')‘* (’{z:%:'f) = /n(fl(to-i-O),%)

neEN (5.22)
f(oh 52+ (o 32) = [(hta+0), 6n)
with the constitutive equations:
o' (%) = Dé (i) Vi € G\Gy (5.23)
o' (22) = Dé (32) Vi, € D
, ) (5.24)
o' (£x) = (D-D)é () Vi € b}'_
where

b ={2e6 | OFT(t)De(U")(2) <0}

Dy={2eé | &F (to)De(U")(3)> 0}

d
- D8,F8,FTD

3. FT0.F + 0.FTDo,F =% -

D' = D'(z,t) =

From Corollary 5.1 and Theorem 5.2, we know that there exists a unique solution (o!,U!) of the
equation system (5.22)~ (5.24).

Step3. Now we can define the sets
Gi={ieb | 8F (i ,0)0'(2)>0}
Gi={2e€G | 8F(4,0)0'@) <0}
and consider the following initial value problem starting at ¢t = ¢5:

/ﬂ(éll’g:;:) + (&129%:';-‘) = L(jl(t)1¢n)

nenN (5.25)

Jfon 5y + (om, 322y = [(hi0,60)
5(32) = Dél

{ o (%) é () Vi, € G\ (5.26)
a(zx) =0

{ (&) = (D~ D')é(%s) N
sy _ =0 FT (2k)6(21) ; Vhe G (527)
a(zk) = aaﬁik)aaF(ik)aaF(zk)
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with ]
' é(2x) = €(U(34))

DO, F (2:) 0, FT (£4) D
GaFT (2) OaF (k) + O, F7 (2) DO, F (1)

D' (&) =
and the initial conditions:
(U,0,a)(Ze,t0) = (U,0,a)(2,t0-0) . (5.28)

Now we can show that the initial value problem (5.25)~(5.28) has a unique analytic solution (U,o,a)
on the interval [2o,1p + §) with some § > 0, and moreover

(U,6) hoto = (U',0%)
where (U!,0!) is the solution of the problem (5.22) ~ (5.24).

Indeed , substituting (5.26) and (5.27) into (5.25) , because of the assumption that the gauge function
F(o,a) is an analytic function of ¢ and a, we will get an equation in U with analytic coefficients.
On the other hand from Proposition 2.1, we know that D and D - D’ are positive definite matrices.
Therefore there exists a unique solution U/ which is analytic on a interval [#o,%+ §) for some § > 0.
For the stress and the hardening parameter functions (o,a), again because of the analytic assumption
of the gauge function F(o,a), we can write (5.26) and (5.27) as a system of ODE’s in the form

dle
T . = A(o,a,t) (5-29)

where A(0,a,t) is an analytic function of 0, @ and t. Therefore (5.29) would have a unique analytic
solution over the interval [to,% + &) satisfying the initial conditions (5.28).

The solution of problem (5.22)~ (5.24), (U?,qa!), satisfies the following problem at #o + 0

fehn 3+ (ol 2y = [(ito+0),60)

neN . (5.30)
/n(“;nad,n)‘f‘( 22,a¢") /(fz(to-f-o) én)
where R
o' (&) = Dé (k) Vi € G\G}
(5.31)
o' (ix) = (D - D)€ (24) VieG?

with U!' € (Q1.0(R4))?. By virtue of Theorem 5.2, this problem has a unique solution. On the other
hand, (U, ), the derivative of the solution of problem (5.25)~ (5.28) with respect to time t also
satisfies (5.30) ~ (5.31) at %9 + 0, therefore we have (U, 6) |0 = (U, ).

Step4. In this step we will show that there exists a constant 5 > 0, such that at any Gaussian point
i , if it is elastic (or plastic ) at the time ¢ = g + 0, then it will still be elastic (or plastic) over the
time interval [#o,%0 + 5) .
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a). For any Gaussian point £, € é’\é; = {i EG’ | F(o',a’)(2)< 2 }, because the solution
(U,o,a) is analytic over [1g,t0+§), so we can always find a constant 0 < &, < § such that

F(e,a)(x,t) < Z Viye G‘\C‘; over the interval [to,to+5,)

which implies that the Gaussian points in G\G, will remain in elastic state over ihe time interval
[to to+&).

b). For any Gaussian point Z; € G such that F(a',a")(%x) = 2o and 8,FT(2,,%)0 () < 0,
we have

to+v
F¥(0,0)(2k .10+ ¥) - F3(0,a) (54, 10) =%/‘° F(0,0)(8FTo + 8, FTa)dt

Soif » < § is small enough, we have 8,F7 ¢ (%:,t) <0 and &(Zk,t) =0 forany t € [to,t0+v).
(from the analytic assumption of the gauge function F(o,a) and the analyticity of the solution
functions (U,0,a) and the fact that & (&x,% +0) = o'(£:x) ) Therefore

2 2 5 1 flotv T A
F*(o,a)(3k,to+v)—-F (a,a)(z,,,to)=§ F(o,a)9,F ¢dt <0 ,
to
ie.
Fz(ﬂ,a)(ik.to‘i'”) < Fz(a,a)(ik,to) = Zg

Hence for t € [to,% + 32) we have F(o0,a)(#:,t) < Zo , which means that the elastic Gaussian
points of é{ remain elastic over the time interval [#o,1o + 82) .

¢). Forany # € @',' , We also have:
1 rlotv
r’(a,a)(s.-,,,:ow)-F’(a,a)(f,,,to)=5/ F(o,a)(8,FTé +8,FTé)dt
‘o .

Since on G% we have 8, FT & (&x,ip+0) > 0, once more by the analyticity of the gauge function
F(o,a) and the continuity of the solution o, a,d and &, we know that on [Zo,%+#), for v small
enough, we have 8,FT ¢ > 0, and moreover & cannot vanish,s0 F(0,a)(8,FT o+ 8, FTa) = 0.
Hence we have F(o,a)(Zx,t) = F(o,a)(%k,%0) = Zo, Vit € [to,lo+ 83) , which means that the
plastic Gaussian points of G} remain plastic.

So if we denote by G, the set:
G:={2€G | RFT(#)o'(3)=0} ,

and if G, is empty, then from the above discussion we can see that the elastic Gaussian point set and
the plastic Gaussian point set determined by the solution (U',0',a') of problem (5.22)~ (5.24) will
remain unchanged for a certain period of time [%,% + &) . Thus whenever the elastic and the plastic
Gaussian point sets were determined at the time level t = t5 + 0, we can always solve the initial value
problem (5.14)~ (5.16) starting at ¢ = ¢, and forward to the time level t, + & without violating the
admissible conditions F(o,a)(Zx,1) < Zp .
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Remark 5.1 If G; is not empty, we can show that the choice for the Gaussian points of G, will
not change the state of the points of G\G; . By considering the sign of higher order derivatives of the
function 9, FT(%4,10) Dé(%x,% + 0) , we can also show that there exists a positive number v, such
that for t € [to,t0 + ) , the elastic Gaussian points remain elastic and the plastic Gaussian points
remain plastic. The details of the proof can be obtained by slightly modifying the proof in Bonnetier’s
thesis (3].

In conclusion, we can always determine the state of each Gaussian paint of the set G for a certain
period of time after 2o by only knowing the history of the solution before to and the information about
the traction function f(z,% + 0). Therefore the problem (5.25)~ (5.28) always has a unique analytic
solution over some time interval [tp,20+8) with the sets 5’{' and é\é{ being modified a little bit if the
set G is not empty. Thus we can always solve an initial value problem starting at t = ¢; and forward
to another time level t = t;,; when we have some Gaussian points switch their elastic or plastic state.
Then we will use the same method to determine the elastic or plastic state for each Gaussian point for
the time ¢ = t;4; + 0, and solve another initial value problem starting at ¢t = t;;; . The similar results
still hold for the subsequent yieldings. Hence finally we will get a unique solution, piecewise analytic
in time, of the system (4.1)~ (4.4) over the time interval [0,T ] satisfying the initial value condition

(4.5). This completes our proof of the theorem. o
6 Energy Estimates
To prove the convergence of the solution for the semi-discrete problem , we need the uniform bound-
edness of the solution. By using the admissible assumptions , we can have the following energy estimate.
Theorem 6.1 There is a posilive constant C independent of the finite element mesh, such that
N0 ey » NéllLzay » 1612y s @l < C | £ llz2a)
ae. t€(0,T).

Proor: Let (U,0,a) bea Cg,'°° solution of (4.1)~ (4.4) with the initial condition (4.5) in the
interval [0,T). Then at any Gaussian point Zj , from Proposition 2.1, we know that there exists a

constant ¢ independent of the clement mesh such that
c(€(Zk),€(Zk)) < (6(2k),€(21)) Vii € G
So
4 4
P wk(E(80),4(80)) € Lo wn(6 (1), (80)) = [ (2,92

k=1 =1

¢, é)dz =c
c/T(e é€)
By virtue of (4.1), we get

c/Q(e,e)dz < /Q(&,é)dx = /Q(f,l'l)d:c . (6.1)
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Using Korn’s inequality, we have
N9 T Eay < cll Flleaay 11U lzagay

So we finally get

U lngeey S @all f Nz - (6.2)
From (6.1) and (6.2), we have

Néliamy < CUF Nyl U llzagy < Crll f IZ2n)
For the boundedness of the stress, we have
é(Zx) = Do (24) if Zx is elastic |,
or
é(2x) = (D - D)o (&) if £, is plastic ,

where both D~! and (D - D')"! are positive definite , and their smallest eigenvalue is bounded below

by a positive constant ¢; independent of the value of t,0,a and the element mesh. So we can use the

same argument as the one we used before, and get
cg/(&,&)dz < /(f‘,t’/)dz
Q Q

So
. 1 2 () .
61z < & W@ 1V llam < C2ll f W@ - (63)

by using the inequality (6.2).

For the boundedness of the hardening parameter, || &||z2(q), We can use the fact that

a@(Zx) =0 if £ is elastic
" 0, FT(£4) #(22)
SaY = oL Z)O\Tk ~ ap a s .
a(zx) = 90 FT (1) OuF (22) 0. F (£k) if 4 is plastic
So
[a(z6) ] < Ma”i)z Vi. €G
MU 2 |8 FT (@) 0o F (35) & VF .

Using the admissible condition vy < |8,F|,|8,F| < T, we then have
[a(za)) < Cle(E)]
that yields

4 4
/(d,d)d:c = 3 wk(@(2),&(34)) € C Y wi(o(8) 6 (8x)) = c/ (6,6)dz
T k=1 T

k=1
By virtue of (6.3), it follows that

/ﬂ(c’r,d)dz < C/Q(t'r,r';)dz < c“/ﬂ(f‘,f')dz

Hence "&"L’(ﬂ) <C|f |lz2(q) and the proof is completed. u}
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7 An Equivalent Weak Formulation

The following weak formulation is the key point of our proof for the convergence of the semi-discrete
problem solutions. Based on this formulation, we will be able to identify the equations satisfied by the
limit of the semi-discrete problem solutions.

Denote the set
=Y Ta(t)dn(z), Ta(t) € CL(1) F(ra, ) (£2) £ Zo
= neN with
B Y| 3 () Ful2), walt) € CLD) Vi, € G
neN
Consider then the functions of the following forms
[ Up; = E UP (1) ¢n (2) . i=1,2
€hyy = z Ul t)—5— a¢n (3)
neN .
o = T 00250 """‘ ""
4 ne : (7.1)
8 n n
= 3 (Uz @) ¢ (a:)_*_U1 (t)8¢ (z))
neN
o, = Y 0% () én(2) i,j=1,2
v_le.V -
ap, = Za}'(t)q&,.(z) i=1,2,...,m
\ nelv :
where UP(t), of; (1), a}(t) € C C{(I). we have the following theorem. <

Theorem 7.1 The semi - discrete initial value problem (4.1)~ (4.5) is equivalent to the following prob-

lem:
Seek (Un,0n,an) of the form (7.1) such that forall t € I,
O¢n Odn
/(U'h" ¢ + o hxz ¢ )dz— /(flv¢n)d3

neN (7.2)
3¢n 5 a¢n
/( hzl zaa )dz-/(fz,d;,,)dz
where .
(on,an) € Kp , U € (H)(D))? Vtel (7.3)
and
_/ﬂ(e’,.—C&,,,r,.-a,.)dz+/0(-d;.,u,,-a,.)dz50 V(7h,vn) € Ky (7.4)
with C = D~', and the initial conditions
Un(0,2z)=0
op(0,z)=0 (7.5)
ap(0,z) =0
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Proor: i) First toshow that the solution (U,0,a) of the system (4.1)~ (4.5) satisfies (7.2) ~ (7.5).
Indeed, we haveforall t € I, '

F(o(2),a(zx)) £ 20 ViceG
which means (o,a) € K, . Now suppose at the point £; the material is elastic, then from (4.2), we
have
é(2x) = Ca(&x)
a(ix) =0
Obviously , in this case, we have
(é(2x) =~ Co(dr),T(5x) — o(28)) + (~a(Er),v(Ex) — a(2x)) 0 . (7.8)

If at the point %, the material is plastic, then from (4.3), we know that there exists a constant A > 0,
such that

{ & (&) = AO,F (o (&), a(dk))
(7.7)

. ~a(f) = AﬂaF(d(ik),a(ik))
where éP(#,) = é(Zx) —C d(£x) . On the other hand, since F(o,a) is convex and analytic, we have
( See, e.g. [18])

F(r.,v) - F(o,a) 2 8,F(o,a)T (7 = 0) + 8aF(0,2) (v - a)
So if at the point #; the material is plastic and (r,v) € K} , we must have
F(7(38),v(2)) - F(o(84),0(8)) = F(7(8),v(2)) - 20 S Zo— Zo =0
"Hence
8o (o (24),(2))7(7(86) ~ 9 (34)) + BaF(o (31) ,@(34) ) (v (26) ~ @ (24) ) S O
From (7.7), we can see that (7.6) still holds. Therefore on any T, € 7 , we have

T..(e -Co,r-0)dz + _/;.n(-a,v -a)dz

4
= Y wi[(¢(8k) = C6(dk),7(2k) — 0 (8k)) = (G (Zk),7(dk) — @ ()] < 0

k=1

So

/(E—Cc'r,r—a)d:t+/(-d,u—a)d:c$0 Y(r.v) € Kn
Q Q

ii) Second to show that the solution of the system (7.2)~(7.5) is unique. Now suppose we have two
solutions, say (U;,01,a;) and (Uz,02,a2), then by the definition we have -

(o1,01) € Ky Vtel
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(03,a2) € K Viel
By virtue of (7.4), it follows that

‘/‘,((él‘éi) -C(61-02),09-01)dz + (~(é&1—63),3—0a,)dz < 0
. which implies

fta-ae-onds + 35 [1VE - o0l + 55 [No-anlF] <0

From (7.2), we can show that
/0(61 -é,02~01)dz =0
Therefore , we have
7 [IVC @a-a)I + llaz - ] < 0
We already know that (U;,0;,a;) and (U;,02,a7) satisfy the same initial conditions (7.5), so we
get . |
L [IVea-anit +laz-aif] de <0,

which means
{ N = 02 ge. QxI . (7.8)
a = 0y
It follows that
{ %1 =02 ae. QxI . (7.9)
a = o

For the strain and displacement function » Wwe know that at any Gaussian point Z; , either
é(2e) = D7V (2y) if £ is elastic

or

o(2k)

T=£)

T D&, F(a,a)8,F(a,a)TD -
Tk T 8.F(0,a) 0.F (0,0)+ 0, F (0,0)7 D0, F(o,a)

il & is plastic. So by (7.8) and (7.9), we have

él é? ’

and hence
Ui, = U,

iii ) Finally to show that the solution of the system (7.2)~(7.5) also satisfies (4.1)~ (4.5). Indeed, we
haveforall t € I,

/ﬂ(e —Cé,r - a)d:c+/n(—d,u- a)dz <0  Y(r,v)€Kn
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So for any Gaussian point %y , take 7 (%) = o(%), v(%) = a(2) forall 2 € G and i # %, ,and
F(r(#),v(2x)) < 2y for £ = 2, . Then obviously (r,v) € K, , and so

(€(20) - Ca(2a),7(20) — o(22))+ (~a(2:),v(2k) - a(£2)) < O . (7.10)

I (2x,t) satisfies F(o(2x,t),a(£x,t)) < Zo, by the continuity of the gauge function F(o,a),
we can conclude from (7.10) that

' { é(£,t) = Co(2,t) { 6(2kst) = Dé(s,t)
or

a(ix,t) =0

(7.11)
a(2:,t)=0

which is just (4.2).
H (Zx,t) satisfies F(o(2:,1),a(Zx,t)) = Zp, then from the uniform boundedness, | (%:)| <
cif 2y and |&(3)| < CJf f li3() » we know that ¢ and & are absolutely continuous with

respect to time t. So if we define g(t) = F(o(Zx,t),a(Zx,t)), because F(a,a) is analytic with
respect to o and a, g(t) is differentiable a.e. on [0,T]. Hence

hlix_l}o g(t+h,)‘- 9(t) <0 because g(t+h) < Zy = g(t)

Jim ) -,f(t_h) 20  because  g(t-h) < Z = g(1)

and so we get %g (t) = 0, which means
8, F (0 (21,1), a(%4,1) )76 (8x;1) + O F(0 (£1,1), (1, 8) )T 624, 2) = 0 . (7.12)
Inequality (7.10) implies that there exists A(Z; ;t) 2 0 satisfying
[ é(24,1) - C & (2k,2) ] [ & (31,1) ] S [ 8, F (0 (21,1),0(d,1)) }

*d(ik,t) aaF(a(ik’t)’a(ik’t))

-G (ék ’ t)
From (7.12) we get

0,F(0(ik ,t)’a(ik$t))rb(ik ’t)
0o F (0(2k,t),a(Zk,1))T0aF (0(Zk,t),a(Z,t))

A(Zk,t) =
Soif A(Zx,t) >0, we have

05 F (0 (%k,1),a(2k,t))T 6 (2k,t) > 0

Hence 8, F(o,a)Ts
. s s oy b F(a,a)'d X
é(Zk,t)—-Co(Zk,t)= aaF(a,a)TaaF(a,a)a"F(a’a)(z"’t)
. . _ 9, F (0,a)To .
G (E,t) = ~ c?aF(a,a)TaaF(a,a)aaF(a'a)(zk't)
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Solving for &(£,t) in the first equation, we get
s D8,F8,FTD ,
o) = (D= g Fra, /oo, F) (B é(Ens1)

. T ara
a8t = -2 O I o P )

which is just nothing else but (4.3).
i A(2r,t) = 0, then we have
O, F (o (%k,t),a(Zx,t))T & (3k,t) = 0

In this case, we again get (4.2) and the proof is completed .

8 Convergence Analysis of the Semi-discrete Problem

Let (Up,0n,a)) be the unique solution of the semi-discrete problem (7.2) ~ (7.5) associated with

the partition 7, of the domain Q. Then we have (U ,0n,a) satisfying:

‘ - 8 . 8 n H
/n(a’ln?;%'*'”h:z'a%)dz'—" /n(fh¢n)dz n 6.1)
_ . n .
(o 322 + b1 22z = [ (fr00)d
0 hay dz, haz 0z, = A 2,Pn)azx
(8.2)

/n (@ -Can,r—on)+(-dn,v-an)dedi <0 V(r,v)eKi
3 _

with
Un € (Qu0(S%))? C (HA(R))? forall tel (8.3)
and the initial conditions
{ Un(0,z)=0
or{(0,z)=0 (8.4)
ap(0,z) =10
From Theorem 6.1, we know that
VU, U, €n, ap are uniformly bounded
VU, U, én,én } in L°(1,L3(Q))
Therefore we can extract a subsequence ( See, e.g. [15] & [16] ), such that
- vVUu,U,o,a,c¢

VU, Unh,0n,0n, ¢,
) é s - ° he g ) - 3 -
VU, Uh,6n,64,ép —— VU,U,0,a,é

weakly * in L% (I,L%()). For the limit functions o,a,¢ and U, we have the following theorem.
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Theorem 8.1 The limit functions (U,0,a) is the unique solution of the following problem

9 . b ,
/n(éu‘o':% +0128—:;)dz = /n(fh¢)dz

V¢ € CP(N) (8.5)
/0(&21-0@:% + 622'82%)43 = _/n(fzﬁﬁ)d"
ae. t e I with (o0,a) € K, where
K={(s.0) € I°(, LX) F(o,a)(z,)< %0 ae. axI} , (8.6)
and the admissible equation
/n ’[(é—Cé,r—a)+(~~d,u-a)] dzdt<0 V(r,v)eK (8.7)

with
U,U e L*(,H}(R)) , ¢,6,a,6 € *I,[XQ)) ,

and t._lle initial conditions

U(z,0)=10
c(z,0)=0 a.c.on 9 (8.8)
0)=10

ProoF: We will prove this theorem in five steps.

Step 1.  To show that the limit functions (U,o,a) also satisfy the initial condition (8.8). When
choosing the subsequence from (Us,ox,ar) we can also assume that

Up,Up —— U,U weakly® in I®(I,H3(®)) , (8.9)

U weakly in H} (@ x I),

and Un

which implies that Uy ,U € AC(I,L*()), ( See, e.g. [15] Chapter 11 ). So for any ¢(z) € L*(Q),
we can take ¢ (z,t) = — = $(z); and get

T
v(z,) € L2(1,1°Q)) ,

0y (z,1)
—5— € L*(1,L%9Q))

Since U(z,t) € AC(I,L¥)), U(z,0) is well defined and
- T a'/’(z,t) L
U(z,0)6(z) = -/0 U(z,t)——at—-dt-/o U (z,0) %z, 1) dt
a.e. z in 2. So we get

[vE0s@ea=-[ vE 2 [ Genee
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Similarly for the function Uj (z,1), we have

Lv.(z,o)¢(z)a = -/m U,.(z,:)‘.’-“’%:—"-) -/ml Oh (2, 0)¥(z,0) -
Thus, by (8.9), we get 4

“ujgu/nv,.(z,ow(s)au /ov(z,ow(z)dx Vé(z) € LX(Q)

which means that the subsequence Uj(z,0) —— U(z,0) weakly in L3(%2) , and so we have
U(z,0) =0 ae. on Q. Similarly we can show that o(z,0) = 0, a(z,0) = 0 a.e. on 2, and
all the initial conditions are satisfied. :

Step 2. To show the system (8.5) holds. Indeed, for any piecewise bilinear function @, € Q1.0(),
we have .

/(aku 8¢h + ahu 0 )dz = / (fl 7¢h)dz

JAC-- oo +orn 32 )iz = [ (frith)ds
ae.t € I . So for any ¢(z,t) € C“(ﬂ) x ¢ (I) , we can find a sequence of simple abstract
fanctions ¢ (z,t) € L (1, Q10(0) N H}(R)) such that én(z,t) converges to ¢(z,t) strongly
in F}(Qx1I), i.e.

Vén € Q1(W) (8.10)

lim / (én - ¢)dzdt = 0 (8.11)
and 0¢ s ‘
. n_ 99 . _
lim M( o '_)’dzdt =0 i=1,2 . (8.12)

For any i,j,k=1,2, we have

9o ¢
-/n ; Oh; 5 Bz, —dz dt - -/n o Gij = 3z, — dz dt

[ (o -5y 08 o (008 _ 09
-_/nxl(ah‘j -au)a:k dzdt + /ﬂx’ah"' (az,, ozkz ) d:l:dt

From the weak*® convergence of the sequence 0y , the first term of the right hand side of (8.13) will
tend to zero as A — 0 . For the second term of the right hand side of (8.13) we have the following

. O¢n 3¢
/M,., (azk o )dzdt

I';" - ¢|l}l’(0xl)

From encrgy estimates , we know that ||, ll2¢axn is uniformly bounded. Meanwhile, from the strong
H?' convergence of én to ¢, we can see that the second term of the right hand side of (8.13) will also

(8.13)

inequality : ) .
dén (2
sz - 82;,

< i ony; lLaaxn

L2 (axn)

< Won,; lzaxn

tend to zero. Obviously

tim [ (jidu)dzdt = [ (hiid)dsat i=1,2
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So as A — 0, we can get, from (8.10), that

. O¢ 8¢
(6ng— + 13— )dzdt= (h,9)d=z
/“ 1o Oz, / V ¢€CP(Q)x C=(I)

[ (gt +omgrisai= [ (f.4)ds

which means (8.5) holds.

Step 3. To show that the limit function (U,o,a) still satisfies (8.7). Let (r,v) € K , then we
can claim that there exists a sequence (75,s ) € K) such that

Vh—_’v ‘

W —T7T
{ strongly in L2(Q2 x I)

Indeed, actually we can construct such a sequence as follows : consider a sequence of mollifiers J, defined
on R? x R ( See [1] for details ). Then we have

and

-/RIxR J((I)dz =1
Let ©, ] be the two sets such that R cc i, I cCc [ and dist(Q,80) > 1, dist(7,8]) > 1.
Define r(z)=v(z)=0 forall z€ (R?xR)\(2x1I). Forany z € 2x17I and € < 1, take

e@= [ k@re-nay= [ L@re-nd

(@)= [ LGwe-niy= [ La)ve-nd

Then by Lemma2.18 of 1], we have 7,(z),v(z) € C(2x J) when ¢ is small enough,and 7. — 7,
v, — v strongly in L}(Q2xI) as ¢ — 0. On the other hand, from the Jenssen’s Inequality ( See, for
example (7] or [16] ), for any convex function G (u) and any integrable function u(z,t) over Q2 x T,

we have
| “m@xn (91 xT) JARICOEIOR ,,,—(le—,) | GG )dza (8.14)
or equivalently
G(/‘M“(’-’J)dzd‘) < -CT(IQ—X—I)/Q”G(Cm(Q x I)u(z,t))dzdt , (8.15)

where m (2 x I) is the measure of the set @ x I and C is an arbitrary constant. So for our gauge

function F(o,a) and functions 7.(z) and ».(z), we have

F(r(@wm(@) = F([ J@r-ndr, [ J@)ve-1dy)

C.m(ﬂxI) /{; IF(C‘"'(Q" NI T(z-1),Ccm@x NI (y)v(z~y))dy
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If we choose C, ='m-(%;7$,wewonldhave Cm(@xNJ(y) €1 V ye 2 x I . So from the
convexity of the gauge function F(r,v) and the assumption: F(0,0) = 0, we get

FOur( =) Atz -)
= F(ur(s=9)+ (1= A)0, Az = 3) + (1= A)0)
S AF(r(= )0 =9))+ (1= M) F(0,0) = A F(r(s=9),(s=3))
where 0 < A, = C.m(§t x [)J(y) < 1. Hence we get
Frda) ) S [ I F(re=n) =)y s 20 [, J)dy=20

which implies (7.,v. ) € K . Because (7(y),v(y)) € C®( x I), for any t € I we can interpolate
(7(y),v{y)) at the Gaussian points by the basis function (¢2) on 7 and construct a sequence of
simple abstract functions (75,45 ) such that

(ta,vn) € K V tel
and (ma,w) — (7,v) strongly in L*(Q x I)
Taking (7,#) = (mx,w) in (8.2), we get
[ (a-Conn-an)dzdt - (o, -an)dzde <o,
which can be written in the form

-/nxl [(én=Can,ma)—(ér,nn)]dzdt - /nxl(a[.,é}.)dzdt

1 d d
+3 -/nxl [d_t(cc"’“")"'a(ah,ah)] dzdt < 0

The weak® convergence of the sequence (Ujp,o0x,as) and the strong convergence of the sequence
(7a,va ) will ensure that the first term tends as A — 0 to

[ le-car-(a,m)dzat ;
Qx/
the second term is equal to
f,Up)dzdt, and hence tends to (f,U)dzdt
( )
Qxl QxTI
Because the initial conditions: ¢(z,0) = 0, a(z,0) = 0, the third term is equal to
1 2
F[IVCa@ g + sl |

d
- Jlim_ inf | VT a,.(r)ﬂ’ > |vC a(T)"’ ,

@) = L2 (9)

Jlim_inf [|an (T) sy 2 (D) IiEa)
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Soweend up as A — 0 with
[, je-con-@m- [ 0tn+2ﬂf%aﬂum+ndnmmﬂ<o
From (8.5) and the fact that

1 2 / ,
Y = ’ dZdt,
Gla@lbe = [ (s.0)

1 2 )
and 3 I\/E"G(T)L,m) = /ax’(Ca,a)dzdt ,
we can finally get (8.7).

Step4. Toshow that (0,a) € K, ie. F(o0,0)<Z ae.on @xJ.Let Pz : RIXR™ —
R x R™ be the projection operator on the convex set

K= {(r,u) € R*xR™ I F(r,v) < Zo}

For the convex set K , we can use the projection theorem and get that for any (o,a) € R® x R™ and
any (r,v)€ X,
o o T o
[[e]-me2]-[2]-2[2]] <
Therefore we get

Ll n [z 2] [ Jaass verores

Forany t€I,let g, and &, be the pieceu}ise constant functions on Q such that on each rectangular
element T, their values are defined by:

op = 2 on(Z) , G := Z a;. (%) (8.16)

k=1 Sn
where S, is the area of the rectangular element 7T, . Then from the fact that the gauge function

F(o,a) is convex and

k=1
we have
F(&n,68) < Z F(a,.(z,,) an(%:)) € Z —zo =2 ,
k—l =1 Sn
i.e.
(6n.6n) € K ae. on QxI

Consequently we have

[[Z]—PR[:],[ZZ]—PR[Z]]SO ae. on Nx1I . (8.17)




For the function [ 71 - Py [ ] , we can find a sequence of abstract functic:s [ ;: ] such that

for any fixed t € theympnecewueeonstant andas h — 0:

L’(nxl) ‘
[ Z]-P,?[Z‘ . (8.18)

Now we can rewrite (8.17) and get

ﬂ:.] % ;',]w + N

- [[[[ ] :’ _[E:’[Z:]-PR[Z”SO
holla]-[&]-=[]
“hall2 Ml ]l Aal[R 2]

The second term of the right hand side of the above eomat on is equal to zero, because (713,8,) are
piecewise constant and {5 ,&,) are defined by (8.16). So from (8.19) we get

LAl a] -]
LAz nl2)-[2) 2] 2] o

From (8.18) we have,as 4 — 0,

PAHEIRIHEARIE
[2]-m[g]  ee o axr,

and so (0,a) € K,or F(o,a) < Zp ae. on Qx1I.

i.e.

Step 5. The proof of the uniqueness follows exactly as the proof of the Theorem 7.1 and this completes

the proof of the theorem. o

For the solution of (8.5)~(8.8), we have the following result :

Proposition 8.1  The solution of the equation system (8.5)~ (8.8) is also the solution of the system
(3.2) ~ (3.10).
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Proor: Here we only need to show that (8.2)~(8.3) imply the existence of the scalar function
‘A(z,t) 2 0 such that |

é-Coa=0

ae. on £ (8.20)
a=0
é-Co=¢& =), F

ae. on P (8.21)
Yy = —AaaF

£={(2,0)eQxI | Fo,a)(z,t)< Z or 9, FTs(z,t) < 0}

P={(z,0)€xI | F(o,0)(z,8) = Z and &FTo(z,1) > 0}
Let § > 0 and denote by Qs(zo,%0) a cube of side length § centered at (zo,% ). Then for any
(r,#) € K, we choose (,2) such that

{ (#,2) = (0,a) in (@ xD\Qs(z0,%)
(F,#) = (7,v) in Qs(zo,t0)

Obviously we have (#,7) € K , and (8.3) yields

/ [(¢=Cé.r—0)+(—é,v—a)]dzdt <0 V(r,v) €K

Qs (=0 4t0)
Using the Lebesgue Differentiation Theorem ( See, for example, [17] ),- wegetas § — 0

(¢-Co,7~-0)+(-Ga,v~-a)<0 ae. on OxI V(r,v) € K

Then using the same approach as we used in the step 3 of the proof of the Theorem 7.1, we can show that
there exists a A(z,t) > 0 such that (8.20) and (8.21) hold . (u]

Remark 8.1 We can easily see that this method can be extended to the cases where the displacement
and stress functions are approximated by piecewise higher order polynomial functions. For instance, if
displacement function is approximated by piecewise Q2 or Q, functions, we can approximate the
corresponding stress function by piecewise Q; functions, and in this case, nine Gaussian points will be

used for the constitutive equations.

Remark 8.2 Unfortunately this semi-discrete approximation method can only be directly applied to
the cases where the partition of the domain 2 only contains rectangular and parallelogram elements.
However, as we will see in the following section, for cases where the partition of the domain contains
some other type of elements, similar approach can be used to develoy some higher order methods.
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9 Generalization to the Triangular Elements

It is desirable to find a method which can be applied to triangular elements and that also has the
_same properties as rectangular or parallelogram elements. Then we would be able to treat cases where
Q is any polygonal domain. In this section , we will briefly discuss a method of using piecewise higher

order polynomials over triangular elements .

Consider the natural triangle of area A as
shown in Figure 9.1, where the natural coordi-
nates (a,f,v) are:

A
A ]
where A;, A2, A3 and A are the area of each
triangles . Hence we have:

_ Ay _As
ﬁ—A’ —A ]

a =

=a+ﬁ+‘y-1

Now consider another standard triangle on
the X — Y plane as shown in Figure9.2, and
take any point (z,y) inside the triangle.

FiGURE 9.2 Standard Triangle
on the X-Y Plane

f 1
“=Y
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1 1
= =(2 ~ ——= 1
| 7 5(2 ﬁy+)

1 o (1.08)
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B ¥

FiGURE 9.1 Natural Triangle
and Coordinates

Then a simple calculation shows:

A=3
Ai=y

A2=-‘;'(\/51+11"\/§)
As=3(V32-y+V3)

Therefore we get a one-to—one correspon-
dence between the X-Y coordinate system and
the natural coordinate system given by the fol-

lowing mapping functions:
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Therefore :

with dA = 2AdadS .

L fewddy= [ J(apim)da

Some symmetrical Gaussian quadrature rules were discussed in [5), [6] and [9] , where an integration
is performed by a Gaussian quadrature rule of the form:

ng
[ 1(a.8,1)dA = A Y wif (@i,
=1

(9.2)

In (9.2), (a;,B:,v:) are the natural coordinates of the ith Gaussian point, w; the corresponding
Gaussian weight and ng is the number of Gaussian points used in the rule .

Table 9.1

Symmetrical Gaussian Quadrature Rules

weig_}t_t

alpha

beta

gamma ||

1.0

1/3

1/3

1/3 |

p value
1
2

173

2/3

1/6

16 |

4

- d
O““"m

0.223381590

0.108103018

0.445948491

0.445948491 ||

0.109951744

0.816847573

0.091576214

0.091576214

5

0.225000000

0.333333333

0.333333333

0.333333333

0.132394152

0.059715872

0.470142064

0.470142064

0.125939181

0.797426985

0.101286507

12

0.116786276

0.501426509

0.249286745

0.249286745

0.050844906

0.873821971

0.063089014

0.101286507<"

0.063089014

0.082851076

0.053145050

0.310352451

0.636502499 ||

16

0.144315677

0.333335333

0.333333333

0.333333333

0.095091634

0.081414823

0.459292588

0.459292588

0.103217371

0.658861384

0.170569308

0.032458498

0.898905543

0.050547228

0.170569308
0.050547228

0.027230314

0.008394777

0.263112830

0.728492393

19

0.097135796

0.333333333

0.333333333

0.333333333

0.031334700

0.020634962

0.489682520

0.489682520

0.077827541

0.125820817

0.437089591

0.437089591

0.079647739

0.623592929

0.188203536

0.188203536 |

0.025577676

0.910540973

0.044729513

0.044729513 |

0.043283539

0.036838412 | 0.221962989

0.741198599 ||

A table of Gaussian quadrature rules of the form (9.2) for the polynomials of degree 1-20 was
listed in [6]. Different from the Gaussian quadrature rules over rectangles, the Gaussian quadrature

rules presented in (6] have some negative weight coefficients w; or some Gaussian points not lying

inside the triangle A for some p values. In our case we cannot use Gaussian quadrature rules with

negative weights, because, as we have seen in the previous discussion, the positiveness of the weight

coefficients plays a very important role in the proofs of many theorems. We also cannot use those

Gaussian quadrature rules with some Gaussian points lying outside the triangle , because we have to use

extrapolation to determine the stress and hardening parameter functions. So in Table9.1 we only list
the rules with positive weights and all Gaussian points inside the triangle A.
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In Table 9.1, for each weight if we have a = § = v , then there is only one Gaussian point
corresponding to that weight coefficient. If we have a # f = 7, then there are C3 = 3 Gaussian
points corresponding to that weight coefficient . Finally if we have a # § # v , then there are C} = 6
Gaussian points corresponding to that weight coefficient . Here we only list the weights and the location
of the Gaussian points for the p values up to 9, for more data with 9 < p < 20 see [6].

Now we can discuss the selection of the finite dimensional spaces for the displacement function
U (z,t) and the stress and hardening parameter functions o (z,t), a(z,t). The strategy is as follows:
the finite dimensional spaces for U, 0 and a should be selected in such a way that

i). The stress and hardening parameter functions 6, a will be uniquely determined by their values
at the ng Gaussian points. ( Assume here we want to use ng Gaussian Points)

ii). The degree of the polynomials of functions: o2,a® and o - ¢(U) must be less than or equal to
the p value listed in Table9.1 corresponding to the number ng .

Table 9.2 gives a list ~f a possible selections of the spaces for U, 0 and a . Here we always select

the zame spaces for 0 and a.

Table9.2 A Possible Selection of the Spaces for U, 0 and «.

ng | D.
1
3

L6

-P. | Space for U [ Space for ¢ and a |
Py f

7 7
P3 Py

For the complete polynomial subspaces, we can only get these three possible combinations. How-
ever, it is not necessary to always use complete polynomial subspaces for the displacement , stress
and hardening functions. As a matter in fact, by using a Gaussian quadrature rule based on some

non-complete polynomial subspaces, we can also get some higher order spaces for U/ ,0 and a.

SIS =]
o)

o

It is also not necessary to always choose piecewise polynomial functions as the subspace for the
stress and hardening parameter functions. Since we don’t require that o,a are C°® functions over the
domain €. Actually we can select any n dimensional subspace S, € L?(Q) over each rectangle or

triangle element , if this subspace has the following properties:

i). The stress and hardening parameter functions in this subspace will be uniquely determined by their

values at some sampling points z; k=1,...,n.

it ). There is a quadrature rule over the rectangle or triangle element with non-negative weights wy
such that n
[ @ wdzdy =Y o f@m)

k=1
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for all the f(z,y) of the forms:

(e(U(z,9))), eU(z.,9))-9(z.¥), (9(z,¥))?

where U (z,y) is any displacement function in its finite dimensional space and g(z,y) is any function

in the space S,.

Finally we would like to indicate that the ideal of using Gaussian point may also be applied to the
cases where the partition of the domain contains some curved elements. The convergence result we get
here is only in the weak L2( x I) sense, which is obviously not good enough for real computational
purpose. However, we can prove that for some special constitutive laws, such as bilinear isotropic or
bilinear kinematic hardening laws , we can actually get strong L2 (2 x I) convergence. For more general
constitutive laws , the strong convergence is still achievable , if we use some extra assumptions on the the

body traction functions.
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